FHWA Development of Crash Modification Factors (DCMF) Safety Evaluation of ICWS

ELCSI-PFS

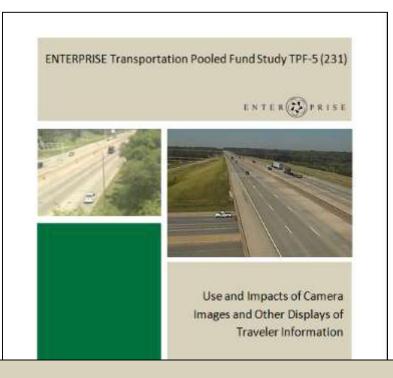
WEBINAR IS BEING RECORDED

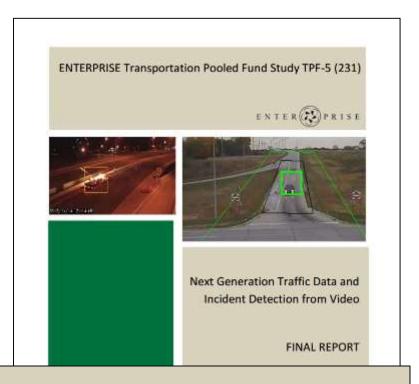
MnDOT Photo

Agenda

WEBINAR IS BEING RECORDED

- Introduction
- ENTERPRISE Program
- Featured Presentation
 - FHWA Development of Crash
 Modification Factors (DCMF)
 Safety Evaluation of ICWS
- Questions
- Closing Remarks



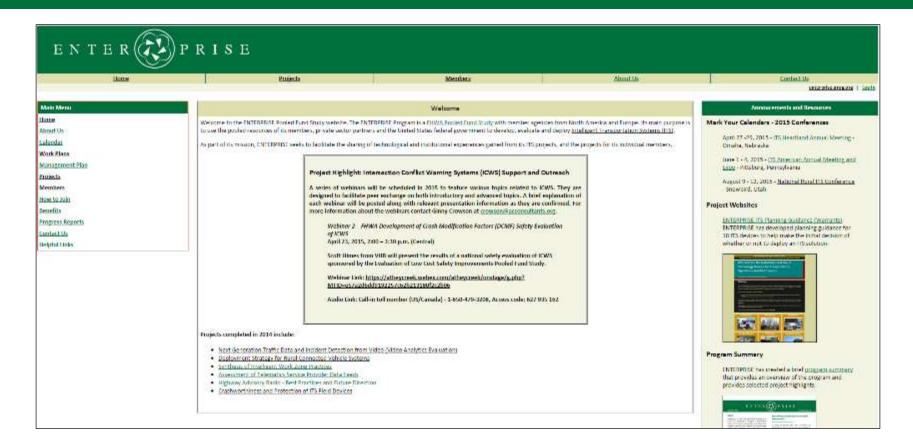


Cory Johnson

Minnesota Department of Transportation and ENTERPRISE Project Champion

Evaluating New TEchnologies for Road PRogram Initiatives in Safety and Efficiency

Members

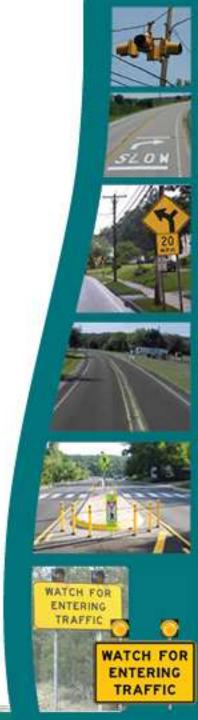

- Arizona DOT
- Georgia DOT
- Idaho Transportation Department
- Illinois DOT
- Iowa DOT
- Kansas DOT
- Maricopa County, Arizona
- Michigan DOT
- Minnesota DOT

- Oklahoma DOT
- Pennsylvania DOT
- Texas DOT
- Washington State DOT
- Ministry of Transport Ontario
- Transport Canada
- Dutch Ministry of Transport
- FHWA

- Recent projects
 - Next Generation Traffic Data and Incident Detection from Video (Video Analytics Evaluation)
 - Synthesis of Intelligent Work Zone Practices
 - Assessment of Telematics Service Provider Data Feeds
 - HAR Best Practices and Future Direction
 - Crashworthiness and Protection of ITS Field Devices
 - Developing Consistency in ITS Safety Solutions-ICWS
 - ICWS Coordination and Systems Engineering
 - ICWS Support and Outreach

www.enterprise.prog.org

Featured Presentation


Dr. Scott Himes

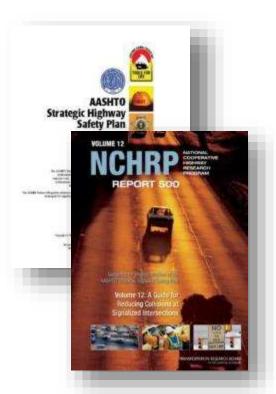
VHB and

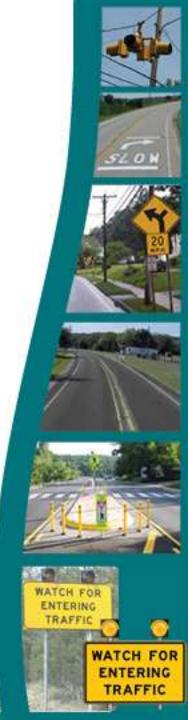
Evaluation of Low Cost Safety Improvements Pooled Fund Study

Agenda

- Overview of ELCSI-PFS
- Overview of ICWS Study
- Study Design
- Combined Results
- Economic Analysis
- Questions

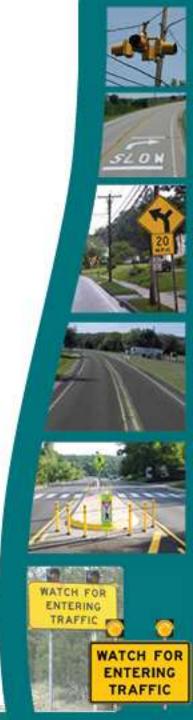
FHWA Evaluation of Low-Cost Safety Improvements Pooled Fund Study



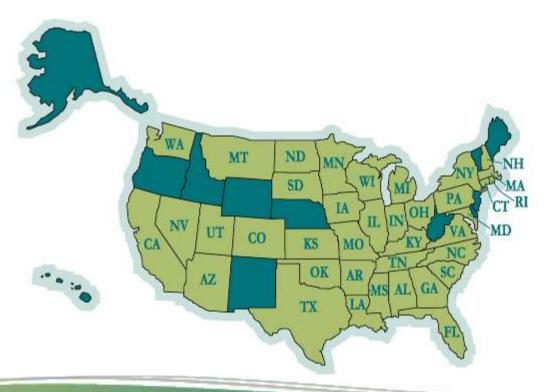


Background

- 1998 National Strategic Highway Safety Plan
 - Critical strategies in 22 key safety areas



- NCHRP Report 500 Series
 - Published 22 reports to assist in implementation of safety strategies
 - Described potential safety strategies in terms of experimental, tried, and proven
 - Most strategies were experimental or tried


Initial Objectives of ELCSI-PFS Effort


- Develop objective measures of effectiveness to support investing decisions
- Evaluation of Low-Cost Safety Improvements Pooled Fund Study
 - FHWA established in 2005 to move tried and experimental to proven
 - Initially 24 state members and 4 phases.

Expansion of the Effort

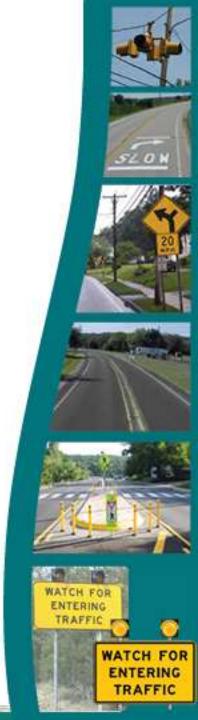
- Continued in 2013 as the Development of Crash Modification Factors (DCMF) Program
 - Evaluates higher-cost improvement also
 - Addressing methodological issues in CMFs and SPFs
- 38 States in the Pool Coast to Coast



Safety Effectiveness of Intersection Conflict Warning System (ICWS)

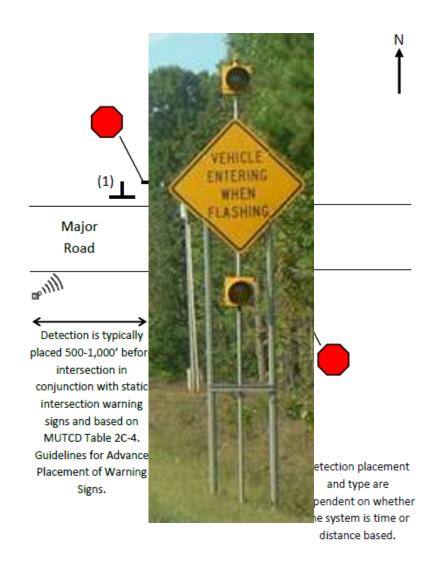
Scott Himes VHB shimes@vhb.com

Acknowledgements


■ FHWA – Roya Amjadi

Panelists

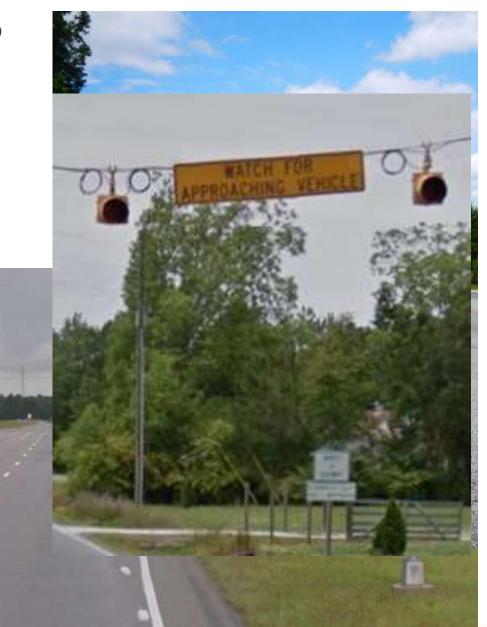
- Brad Estochen Minnesota DOT
- John Miller Missouri DOT
- Shawn Troy / Carrie Simpson North Carolina DOT


Project Team

- Bhagwant Persaud Persaud and Lyon
- Kim Eccles VHB
- Frank Gross VHB
- Jonathan Soika VHB
- Kara Peach VHB

Overview of ICWS

- ICWS Warning signs with flashing beacons activated by conflicting vehicle
 - Alert drivers on major route to vehicles entering
 - Assist minor route drivers selecting gaps
 - Combination



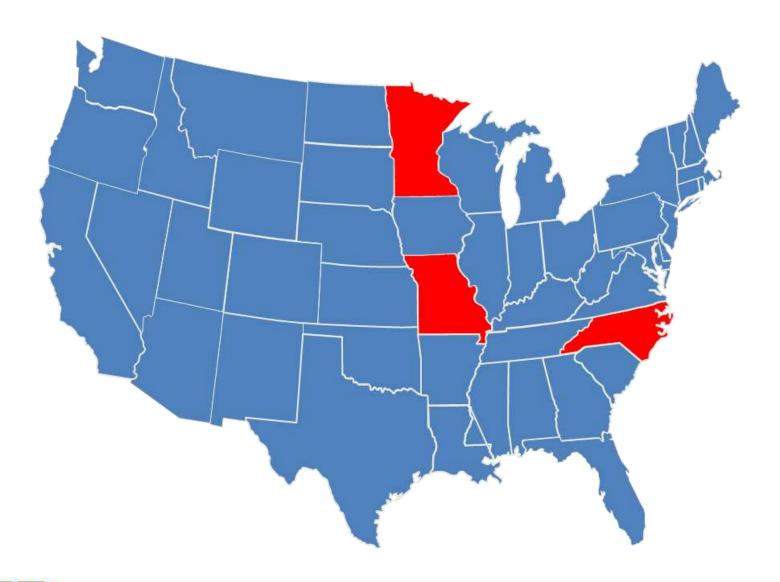
Crowson and Jackels – December 2010

Overview of ICWS

- Typical Uses
 - Limited ISD
 - Gap-acceptance crash history
- Installation Locations
 - Post-mounted
 - Overhead

Overview of ICWS

- Overhead versus Post-Mounted
 - Presence of existing overhead flashers / capability
 - Available sight distance
 - Preference of traffic engineers



Study Questions

- Do effects vary by type of treatment?
 - Overhead versus post-mounted
 - Mainline versus minor approach
 - Combination
- Do effects vary by site characteristics?
 - Traffic volume
 - Posted speed limit
 - Geometric characteristics

ICWS Evaluation Volunteer States

Applicable Scenarios

Four-leg stop-controlled intersections

■ Two-lane mainline

Four-lane mainline

Minnesota – Ten Two-Lane at Two-Lane Sites

- "LOOK FOR TRAFFIC" on minor, "ENTERING TRAFFIC WHEN FLASHING" on major
- "LOOK FOR TRAFFIC WHEN FLASHING" on minor
- "VEHICLES APPROACHING WHEN FLASHING on minor "CROSS TRAFFIC WHEN FLASHING" on major

Minnesota – Three Four-Lane at Two-Lane Sites

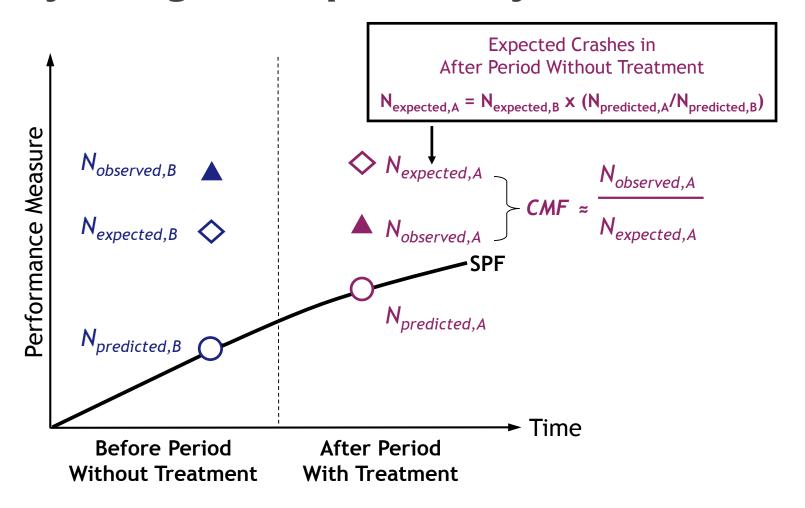
Visual Display on minor

Missouri – Six Two-Lane at Two-Lane Sites

Missouri – Eight Four-Lane at Two-Lane Sites

North Carolina

- Two-lane mainline 41 sites
- Four-lane mainline 10 sites
- Post-mounted and overhead
- Split between major and/or minor approaches


North Carolina - Messages

- VEHICLE ENTERING WHEN FLASHING
- VEHICLE ENTERING
- WATCH FOR APPROACHING VEHICLE
- WATCH FOR APPROACHING VEHICLE WHEN FLASHING

Study Design – Empirical Bayes Before-After

Reference Groups

- Similar to treatment sites
 - Same before and after periods
 - Safety performance not affected by treatment

Account for potential biases

- Annual factors account for unobserved (weather, drivers, vehicles, etc.)
- Average crash frequency regression to the mean
- Facility types
- Regional differences

Safety Performance Functions

- Developed separately by State and number of major route lanes
- Considered Traffic, Geometry, and TCDs

Combined Results – Two-Lane at Two-Lane

Crash Type	Total	Fatal and Injury	Right Angle	Rear-end	Night time
EB estimate without strategy	912.8	515.6	522.2	100.5	128.8
Observed crashes with strategy	670	362	420	43	116
CMF	0.73	0.70	0.80	0.43	0.90
Standard error	0.04	0.05	0.05	0.07	0.10

Combined Results – Four-Lane at Two-Lane

Crash Type	Total	Fatal and Injury	Right Angle	Rear-end	Night time
EB estimate without strategy	464.5	263.6	295.5	33.1	85.5
Observed crashes with strategy	385	212	252	33	53
CMF	0.83	0.80	0.85	0.97	0.61
Standard error	0.06	0.07	0.08	0.22	0.11

Treatment Category – NCDOT

- Category 1 Overhead signs and flashers on major; loop on minor
- Category 2 Overhead signs and flashers on minor; loop on major
- Category 3a Post-mounted signs and flashers on major; loop on minor
- Category 3b Post-mounted signs and flashers on minor; loop on major
- Category 4 Other

Results by Category – Two-Lane at Two-Lane

Cate	gory	1 OH-Maj	2 OH-Min	3a PM-Maj	3b PM-Min	4 Combo
Sit	tes	16	15	14	8	16
Total	CMF (SE)	0.74 (0.07)	0.89 (0.08)	0.52 (0.06)	0.89 (0.16)	0.70 (0.09)
	N	173	241	120	42	94

Results by Category – Two-Lane at Two-Lane

Cate	gory	1 OH-Maj	2 OH-Min	3a PM-Maj	3b PM-Min	4 Combo
Sites		16	15	14	8	16
Total	CMF (SE)	0.74 (0.07)	0.89 (0.08)	0.52 (0.06)	0.89 (0.16)	0.70 (0.09)
	N	173	241	120	42	94
Fatal and Injury	CMF (SE)	0.60 (0.08)	0.94 (0.10)	0.45 (0.07)	1.06 (0.29)	0.74 (0.12)
	N	91	144	58	18	51
Right Angle	CMF (SE)	0.81 (0.10)	1.08 (0.11)	0.45 (0.07)	1.25 (0.30)	0.70 (0.11)
	N	111	169	61	25	54

Results by Category – Four-Lane at Two-Lane

Cate	gory	1	2	3a PM-Maj	3b PM-Min	4
Sit	ces			12	7	
Total	CMF (SE)			0.75 (0.07)	0.69 (0.13)	
	N			243	35	
Fatal and	CMF (SE)			0.73 (0.08)	0.90 (0.21)	
Injury	N			138	22	
Right Angle	CMF (SE)			0.77 (0.08)	0.76 (0.17)	
	N			174	23	

Results by "When Flashing" Presence – Two-Lane at Two-Lane

Crash Type	Message	Expected	Observed	CMF	SE
Total Crashes	When Flashing	656.2	458	0.70	0.04
	Not Present	256.6	212	0.82	0.07
Fatal & Injury Crashes	When Flashing	373.7	242	0.65	0.05
	Not Present	141.9	120	0.84	0.10
Right-Angle Crashes	When Flashing	364.8	275	0.75	0.06
	Not Present	157.4	145	0.92	0.10

Results by Intersection Lighting Presence – Four-Lane at Two-Lane

Crash Type	Lighting	Expected	Observed	CMF	SE
Total Crashes	Present	169.5	119	0.70	0.09
	Not Present	295.0	266	0.90	0.08
Fatal & Injury Crashes	Present	87.3	48	0.55	0.09
	Not Present	176.3	164	0.93	0.10
Right-Angle Crashes	Present	78.9	62	0.78	0.13
	Not Present	216.6	190	0.87	0.09

Results by Before Period Expected Crash Frequency – Four-Lane at Two-Lane

Crash Type	Crashes/Year	Expected	Observed	CMF	SE
Total Crashes	≤3	114.2	121	1.05	0.15
	>3	350.3	264	0.75	0.06
Fatal & Injury Crashes	≤ 2	66.3	74	1.10	0.18
	> 2	197.3	138	0.70	0.08
Right-Angle Crashes	≤ 2.5	93.3	116	1.23	0.18
	> 2.5	202.2	136	0.67	0.08

Economic Analysis – Installation Costs

- Installation costs
 - Two-lane at two-lane
 - 。 Minimum: \$9,000
 - Average: \$41,500
 - Maximum: \$109,500
 - Four-lane at two-lane
 - Minimum: \$49,000
 - Average: \$106,200
 - Maximum: \$142,500
- Average installation costs consider
 - Costs provided by States
 - Type of treatment (overhead vs. post-mounted)
 - Number of treated approaches

Economic Analysis – Maintenance and Operations

- Maintenance and operations costs (annual)
 - Minimum: \$625
 - Average:
 - \$1,074 two-lane at two-lane
 - \$1,933 four-lane at two-lane
 - Maximum: \$3,400
 - Intersections with probes or microwave and wireless communication
- Lifespan
 - System 10 years
 - Loops 5 years

Economic Analysis – Crash Costs

- Identified crash costs by type and severity from FHWA's
 Crash Cost Estimates by Maximum Police-Reported Injury
 Severity Within Selected Crash Geometries
- Converted to 2014 costs using ratio of 2014 value of statistical life to 2001 value of statistical life = 2.42
- Average crash cost \$202,000 for two-lane at two-lane intersections
- Average crash cost \$220,000 for four-lane at two-lane intersections

Economic Analysis – B/C Ratio

- Two-lane at two-lane intersections
 - 35:1
 - Sensitivity analysis showed 20:1 to 50:1
- Four-lane at two-lane intersections
 - 13:1
 - Sensitivity analysis showed 8:1 to 19:1

Summary

- The CMFs below are recommended
- The results suggest ICWS can be highly cost-effective as a safety treatment

Crash Type	Total	Fatal and Injury	Right Angle	Rear-end	Night time	
Two-Lane at Two-Lane						
CMF	0.73	0.70	0.80	0.43	0.90	
Standard error	0.04	0.05	0.05	0.07	0.10	
Four-Lane at Two-Lane						
CMF	0.83	0.80	0.85	0.97	0.61	
Standard error	0.06	0.07	0.08	0.22	0.11	

Final Report

- Will be available on <u>ELCSI-PFS website</u>
 - (Search "FHWA ELCSI-PFS" in internet browser)

Thank you!

Scott Himes – shimes@vhb.com

4000 WestChase Boulevard, Suite 530

Raleigh, NC 27607

Phone: 919.334.5608

Questions?

Access the WebEx Q&A box on the right side of your screen. Type your question and send to all participants.

Moderator will read questions aloud and presenter will respond verbally.

Closing Remarks

Next Webinar:

Liability, Reliability and Credibility – Challenges for ICWS

June 25, 2015 2:00 – 3:30PM (Central)

Closing Remarks

- For more information...
 - Scott Himes, VHB
 Transportation Analyst
 shimes@vhb.com, 919.334.5608
 - Cory Johnson, MnDOT
 ENTERPRISE Project Champion
 coryj.johnson@state.mn.us, 651.234.7062
 - Ginny Crowson, Athey Creek
 ENTERPRISE Program Support Consultant
 crowson@acconsultants.org, 651.600.3338

www.enterprise.prog.org

